1°) Déterminez
$$A = \int_0^{\pi} f(x) dx$$

- 2°) Démontrez que $0 \le f(x) \le x$ pour tous les x de $[0; \pi]$.
- 3°) Déterminez un encadrement de A.
- 4°) Déterminez la dérivée de sin x x cos x
- 5°) Déterminez A.

1°) Déterminez
$$A = \int_0^{\pi} f(x) dx$$

1°) Déterminez
$$A = \int_0^{\pi} f(x) dx = F(\pi) - F(0)$$

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

1°) Déterminez
$$A = \int_0^{\pi} f(x) dx = F(\pi) - F(0)$$

= ... ?

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

f est la fonction définie sur \mathbb{R} par $f(x) = x \sin x$

1°) Déterminez
$$A = \int_{0}^{\pi} f(x) dx = F(\pi) - F(0)$$

= ... ?

$$\int_{a}^{b} f(x) \frac{dx}{dx} = F(b) - F(a)$$

$$(u \times v)' = u' \vee + v' u \neq u' \times v'$$

primitive de (u × v) ... ?

f est la fonction définie sur \mathbb{R} par $f(x) = x \sin x$

1°) Déterminez
$$A = \int_{0}^{\pi} f(x) dx = F(\pi) - F(0)$$

= ... ?

$$\int_{a}^{b} f(x) \frac{dx}{dx} = F(b) - F(a)$$

$$(u \times v)' = u' \vee + v' u \neq u' \times v'$$

 \rightarrow primitive de (u × v) \neq U × V

f est la fonction définie sur \mathbb{R} par $f(x) = x \sin x$

1°) Déterminez
$$A = \int_0^{\pi} f(x) dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

$$(u \times v)' = u' \vee + v' u \neq u' \times v'$$

$$\rightarrow$$
 primitive de (u × v) \neq U × V

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

Pour arriver à l'ordre demandé $0 \le f(x) \le x$ il faut partir de ...

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

Pour arriver à l'ordre demandé $0 \le f(x) \le x$ il faut partir d'un autre ordre.

Quels autres ordres a-t-on?

• • •

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

2°) Démontrez que
$$0 \le f(x) \le x$$

pour tous les x de $[0; \pi]$.

Pour arriver à l'ordre demandé $0 \le f(x) \le x$ il faut partir d'un autre ordre.

Pour tous les x de
$$[0; \pi]$$
 $0 \le x \le \pi$

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

2°) Démontrez que
$$0 \le f(x) \le x$$

pour tous les x de $[0; \pi]$.

Pour arriver à l'ordre demandé $0 \le f(x) \le x$ il faut partir d'un autre ordre.

Pour tous les x de
$$[0; \pi]$$
 $0 \le x \le \pi$

Cet ordre permettra-t-il d'arriver à $0 \le f(x) \le x$?

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

Pour arriver à l'ordre demandé $0 \le f(x) \le x$ il faut partir d'un autre ordre.

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

Pour arriver à l'ordre demandé $0 \le f(x) \le x$ il faut partir d'un autre ordre.

Pour tous les x de [0;
$$\pi$$
] $0 \le x \le \pi$ $\sin x$
Cet ordre ne permet pas d'arriver à $0 \le f(x) \le x$

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

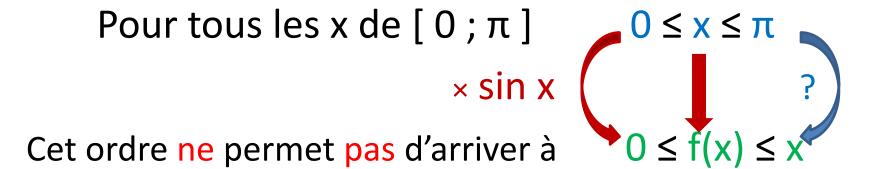
2°) Démontrez que $0 \le f(x) \le x$ pour tout x de [0; π] Quel autre ordre a-t-on?

Pour tous les x de [0;
$$\pi$$
] $0 \le x \le \pi$ $\times \sin x$
Cet ordre ne permet pas d'arriver à $0 \le f(x) \le x$

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

Pour tous les x réels $-1 \le \sin x \le 1$

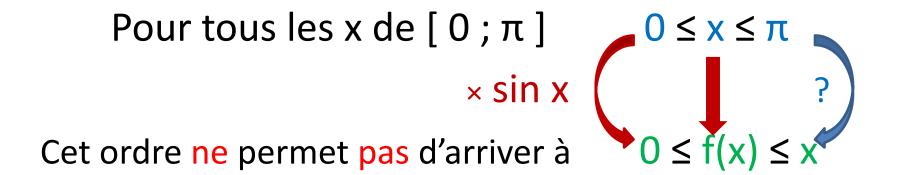


1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

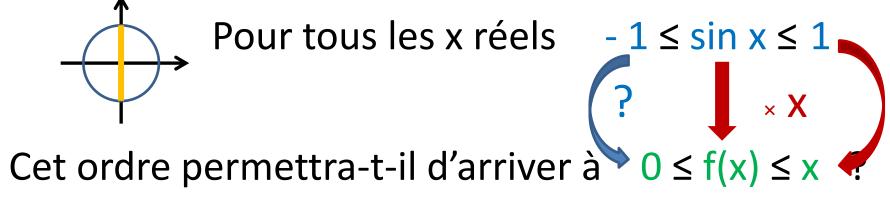
2°) Démontrez que $0 \le f(x) \le x$ pour tout x de $[0; \pi]$ Pour tous les x réels $-1 \le \sin x \le 1$

Cet ordre permettra-t-il d'arriver à $0 \le f(x) \le x$?



1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

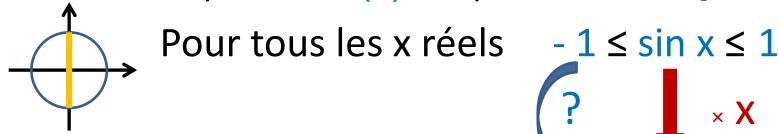


Pour tous les x de
$$[0; \pi]$$

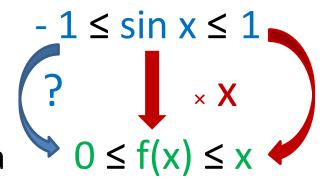
 $\times \sin x$
Cet ordre ne permet pas d'arriver à $0 \le x \le \pi$
 $0 \le x \le \pi$
 $0 \le x \le \pi$

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

impossible de déterminer une primitive de x sin x

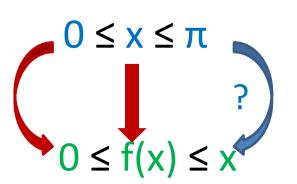


Cet ordre ne permet pas d'arriver à



Pour tous les x de $[0; \pi]$ × sin x

Cet ordre ne permet pas d'arriver à



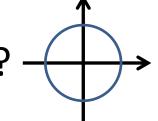
1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) Démontrez que $0 \le f(x) \le x$ pour tout x de [0; π]

Pour tous les x réels $-1 \le \sin x \le 1$

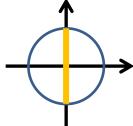
Cet ordre ne permet pas d'arriver à

Quel autre ordre a-t-on?



1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) Démontrez que $0 \le f(x) \le x$ pour tout x de $[0; \pi]$



Pour tous les x réels $-1 \le \sin x \le 1$

 $-1 \le \sin x \le 1$ $x \times X$ 0 < f(x) < x

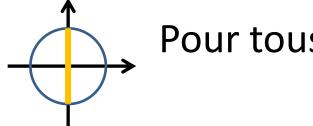
Cet ordre ne permet pas d'arriver à

Quel autre ordre a-t-on? Pour tous les x de $[0; \pi]$

 $0 \le \sin x \le 1$

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) Démontrez que $0 \le f(x) \le x$ pour tout x de [0; π]



Cet ordre ne permet pas d'arriver à

Pour tous les x réels $-1 \le \sin x \le 1$

Pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \implies x \ge 0$ conserve l'ordre

1°)
$$A = \int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'$ ordre est conservé

1°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'$ ordre est conservé

$$\longrightarrow$$
 $0 \times x \le x \sin x \le 1 \times x \iff 0 \le f(x) \le x$

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

- 2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'ordre$ est conservé
 - \longrightarrow $0 \times x \le x \sin x \le 1 \times x \iff 0 \le f(x) \le x$
- 3°) Déterminez un encadrement de A.

1°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

- 2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ $x \le 0$ $x \le 0$ $x \le 0$ $x \le 0$ $x \le 0$
 - \longrightarrow $0 \times x \le x \sin x \le 1 \times x \longleftrightarrow 0 \le f(x) \le x$
- 3°) Croissance de l'intégrale : (même méthode qu'à l'exo 4)

$$0 \le f(x) \le x \implies ...$$

1°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'ordre$ est conservé

$$\longrightarrow$$
 $0 \times x \le x \sin x \le 1 \times x \iff 0 \le f(x) \le x$

$$0 \le f(x) \le x \implies \int_0^{\pi} 0 \, dx \le \int_0^{\pi} f(x) \, dx \le \int_0^{\pi} x \, dx$$

1°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'ordre$ est conservé

$$\longrightarrow$$
 $0 \times x \le x \sin x \le 1 \times x \iff 0 \le f(x) \le x$

$$0 \le f(x) \le x \quad \Longrightarrow \quad \int_0^{\pi} 0 \, dx \le \int_0^{\pi} f(x) \, dx \le \int_0^{\pi} x \, dx$$

$$\longrightarrow \left(C \right)_{0}^{\pi} \leq A \leq \left(0,5x^{2} \right)_{0}^{\pi} \longrightarrow ...$$

1°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'ordre$ est conservé

$$\longrightarrow$$
 $0 \times x \le x \sin x \le 1 \times x \iff 0 \le f(x) \le x$

$$0 \le f(x) \le x \implies \int_0^{\pi} 0 \, dx \le \int_0^{\pi} f(x) \, dx \le \int_0^{\pi} x \, dx$$

$$\longrightarrow \left(\begin{array}{c} C \end{array} \right)_0^{\pi} \le A \le \left(\begin{array}{c} 0.5x^2 \end{array} \right)_0^{\pi} \longrightarrow C - C \le A \le 0.5\pi^2 - 0$$

1°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

2°) pour tous les x de $[0; \pi]$ $0 \le \sin x \le 1$ x dans $[0; \pi] \longrightarrow x \ge 0 \longrightarrow l'ordre$ est conservé

$$\longrightarrow$$
 $0 \times x \le x \sin x \le 1 \times x \iff 0 \le f(x) \le x$

$$0 \le f(x) \le x \quad \Longrightarrow \quad \int_0^{\pi} 0 \, dx \le \int_0^{\pi} f(x) \, dx \le \int_0^{\pi} x \, dx$$

$$\longrightarrow \left(\begin{array}{c} C \end{array} \right)_0^{\pi} \le A \le \left(\begin{array}{c} 0.5x^2 \end{array} \right)_0^{\pi} \longrightarrow C - C \le A \le 0.5\pi^2 - 0$$
Réponse : $0 \le A \le 0.5\pi^2$

4°) Déterminez la dérivée de sin x – x cos x

4°) $(\sin x - x \cos x)' = ...$

```
4°) (\sin x - x \cos x)' = (\sin x)' - (x \cos x)'
= \cos x - (u \times v)' = \cos x - (u' + v' + v' + u)
= ...
```

```
4°) (\sin x - x \cos x)' = (\sin x)' - (x \cos x)'
= \cos x - (u \times v)' = \cos x - (u' + v' + u)
= \cos x - (1 \cos x + (-\sin x) + x)
= \cos x - \cos x + x \sin x = ...
```

```
4°) (\sin x - x \cos x)' = (\sin x)' - (x \cos x)'
= \cos x - (u \times v)' = \cos x - (u' + v' + u)
= \cos x - (1 \cos x + (-\sin x) + x)
= \cos x - \cos x + x \sin x = x \sin x
```

5°) Déterminez A.

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°)
$$A = \int_0^{\pi} x \sin x dx$$

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

F est la primitive (inconnue à la question 1°) de x sin x

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

Fest la primitive (inconnue à la question 1°) de $x \sin x$ ($\sin x - x \cos x$)' = $x \sin x$ d'après la question 4° $\implies F(x) = \sin x - x \cos x$

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

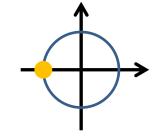
F est la primitive (inconnue à la question 1°) de $x \sin x$ ($\sin x - x \cos x$)' = $x \sin x$ d'après la question 4° $\implies F(x) = \sin x - x \cos x$ A = (...) - (...)

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

F est la primitive (inconnue à la question 1°) de $x \sin x$ ($\sin x - x \cos x$)' = $x \sin x$ d'après la question 4°



$$\rightarrow$$
 F(x) = sin x - x cos x

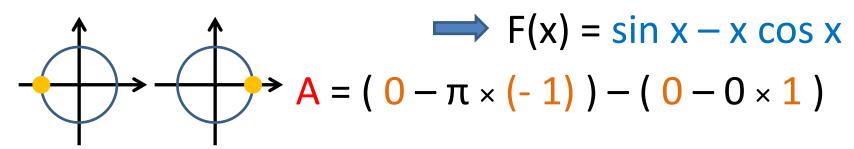
$$A = (0 - \pi \times (-1)) - (...)$$

4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u)$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_{0}^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

Fest la primitive (inconnue à la question 1°) de $x \sin x$ ($\sin x - x \cos x$)' = $x \sin x$ d'après la question 4°

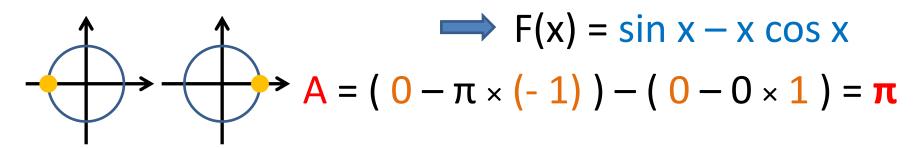


4°)
$$(\sin x - x \cos x)' = (\sin x)' - (x \cos x)'$$

= $\cos x - (u \times v)' = \cos x - (u' + v' + u')$
= $\cos x - (1 \cos x + (-\sin x) + x)$
= $\cos x - \cos x + x \sin x = x \sin x$

5°) A =
$$\int_0^{\pi} x \sin x \, dx = F(\pi) - F(0)$$

Fest la primitive (inconnue à la question 1°) de $x \sin x$ ($\sin x - x \cos x$)' = $x \sin x$ d'après la question 4°



Exercice 8:

f est la fonction définie sur [- 3 ; - 1]

$$par f(x) = \frac{-2}{1 + x^2}$$

1°) Déterminez un encadrement de f(x).

2°) Déterminez un encadrement de
$$A = \int_{-3}^{-1} f(x) dx$$

Exercice 8:

f est la fonction définie sur [- 3 ; - 1]

$$-2$$
par $f(x) = \frac{1 + x^2}{1 + x^2}$

1°) Déterminez un encadrement de f(x).

```
Deux méthodes : encadrement de f(x) trouvé dans ... à partir de ...
```

Exercice 8:

f est la fonction définie sur [- 3 ; - 1]

$$-2$$
par $f(x) = \frac{1 + x^2}{1 + x^2}$

1°) Déterminez un encadrement de f(x).

```
Deux méthodes : encadrement de f(x)
trouvé dans le tableau de variation ( idem exo 4 )
à partir de - 3 \le x \le -1
car x n'est écrit qu'une seule fois dans f(x)
```

1°) -
$$3 \le x \le -1$$
 < 0
La fct ...

$$f(x) = \frac{-2}{1 + x^2}$$

1°) -
$$3 \le x \le -1 < 0$$

$$f(x) = \frac{-2}{1 + x^2}$$

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

$$f(x) = \frac{-2}{1 + x^2}$$

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2$$

$$f(x) = \frac{-2}{1 + x^2}$$

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse ...

$$f(x) = \frac{-2}{1 + x^2}$$

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse est str. décroissante sur [0; + ∞ [

$$f(x) = \frac{1 + x^2}{1 + x^2}$$

- 2

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse est str. décroissante sur [0; +∞[

$$\frac{1}{1 + (-3)^2} \le \frac{1}{1 + x^2} \le \frac{1}{1 + (-1)^2}$$

$$\frac{-2}{f(x)} = \frac{-2}{1 + x^2}$$

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse est str. décroissante sur [$0; + \infty$ [

$$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1 + (-3)^2} \le \frac{1}{1 + x^2} = \frac{-2}{1 + (-1)^2}$$

$$\frac{1}{1 + x^2} = \frac{-2}{1 + x^2}$$

Multiplier ...

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse est str. décroissante sur [0; +∞[

$$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1 + (-3)^2} \le \frac{1}{1 + x^2} \le \frac{1}{1 + (-1)^2}$$

$$\frac{1}{1 + x^2} = \frac{-2}{1 + x^2}$$

Multiplier par un négatif inverse l'ordre

• • •

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse est str. décroissante sur [0; +∞[

$$\frac{1}{1 + (-3)^2} \le \frac{1}{1 + x^2} \le \frac{1}{1 + (-1)^2}$$

$$\frac{-2}{f(x)} = \frac{-2}{1 + x^2}$$

Multiplier par un négatif inverse l'ordre

$$1^{\circ}$$
) - 3 \leq x \leq - 1 $<$ 0

$$(-3)^2 \ge x^2 \ge (-1)^2$$

Additionner conserve l'ordre

$$1 + (-3)^2 \ge 1 + x^2 \ge 1 + (-1)^2 > 0$$

La fct inverse est str. décroissante sur [0; +∞[

$$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1 + (-3)^2} \le \frac{1}{1 + x^2} = \frac{-2}{1 + (-1)^2}$$

$$\frac{1}{1 + x^2} = \frac{-2}{1 + x^2}$$

Multiplier par un négatif inverse l'ordre

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

$$f(x) = \frac{-2}{1 + x^2}$$
 définie sur [-3;-1]

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

f(x) =
$$\frac{1 + x^2}{1 + x^2}$$
 définie sur [- 3 ; - 1]
$$f'(x) = \left(\frac{u}{v}\right)' = \frac{u' \ v - v' \ u}{v^2} = \frac{...}{...}$$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

f(x) =
$$\frac{1 + x^2}{1 + x^2}$$

f'(x) = $\frac{u}{v}$ ' = $\frac{u' v - v' u}{v^2}$ = $\frac{0(1 + x^2) - (-2)(0 + 2x)}{(1 + x^2)^2}$

$$=$$
 $(1 + x^2)^2$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

$$f(x) = \frac{1 + x^{2}}{1 + x^{2}}$$

$$f'(x) = \left(\frac{u}{v}\right)' = \frac{u' \ v - v' \ u}{v^{2}} = \frac{0 \ (1 + x^{2}) - (-2) \ (0 + 2x)}{(1 + x^{2})^{2}}$$

$$= \frac{4x}{(1 + x^{2})^{2}}$$
signes de f'(x)?

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

f(x) =
$$\frac{1 + x^2}{1 + x^2}$$

f'(x) = $\frac{u}{v}$ ' $\frac{u' \, v - v' \, u}{v^2}$ = $\frac{0 \, (1 + x^2) - (-2) \, (0 + 2x)}{(1 + x^2)^2}$
= $\frac{4x}{(1 + x^2)^2}$ négatif sur [-3;-1]
= $\frac{1 + x^2}{v^2}$ carré positif

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

$$f(x) = \frac{-2}{1 + x^2}$$
 définie sur [- 3 ; -1] $f'(x) = \frac{4x}{(1 + x^2)^2}$

X	•••
f '(x)	
f(x)	

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

$$f(x) = \frac{-2}{1 + x^2}$$
 définie sur [- 3 ; -1] $f'(x) = \frac{4x}{(1 + x^2)^2}$

X	- 3 - 1
f '(x)	1
f(x)	

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

$$f(x) = \frac{-2}{1 + x^2}$$
 définie sur [- 3 ; -1] $f'(x) = \frac{4x}{(1 + x^2)^2}$

X	- 3 - 1
f '(x)	_
f(x)	- 0,2

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

$$f(x) = \frac{-2}{1 + x^2}$$
 définie sur [- 3 ; -1] $f'(x) = \frac{4x}{(1 + x^2)^2}$

X	- 3 - 1
f '(x)	_
f(x)	- 0,2

$$-1 \le f(x) \le -0.2$$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

1°) - $3 \le x \le -1$ \longrightarrow - $1 \le f(x) \le -0.2$ 2°) Déterminez un encadrement de $A = \int_{-3}^{-1} f(x) dx$

idem exo
$$4 + 5 + 7$$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

2°) Croissance de l'intégrale : $-1 \le f(x) \le -0.2$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

2°) Croissance de l'intégrale : $-1 \le f(x) \le -0.2$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

2°) Croissance de l'intégrale : $-1 \le f(x) \le -0.2$

$$-x = A \leq A \leq \left[-0.2x\right]_{-3}^{-1}$$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

2°) Croissance de l'intégrale : $-1 \le f(x) \le -0.2$

$$-x = A \leq A \leq \left[-0.2x\right]_{-3}^{-1}$$

$$(1) - (3) \le A \le (0,2) - (0,6)$$

1°) -
$$3 \le x \le -1$$
 \longrightarrow - $1 \le f(x) \le -0.2$

2°) Croissance de l'intégrale : $-1 \le f(x) \le -0.2$

$$-x = A \leq A \leq \left[-0.2x\right]_{-3}^{-1}$$

$$(1) - (3) \le A \le (0,2) - (0,6)$$

$$-2 \leq A \leq -0.4$$

Exercice 9:

f est la fonction définie sur [1;2]

$$x + 1$$
par $f(x) = \frac{x + 1}{2 + 2x + x^2}$

- 1°) Déterminez les sens de variations de f.
- 2°) Déterminez un encadrement de f(x).
- 3°) Déterminez un encadrement de $A = \int_{1}^{-1} f(x) dx$
- 4°) Déterminez A.

1°) Déterminez les sens de variations de f.

$$f(x) = \frac{x+1}{2+2x+x^2}$$

1°) f'(x) =
$$\begin{pmatrix} x + 1 \\ \hline 2 + 2x + x^2 \end{pmatrix}$$

$$f(x) = \frac{x+1}{2+2x+x^2}$$

= ...

$$f(x) = \frac{x+1}{2+2x+x^2}$$

$$f'(x) = ...$$

$$f(x) = \frac{x+1}{2+2x+x^2}$$

variations de f ...?

Le dénominateur est un carré, donc positif.

x est dans [1;2] donc x > 0 donc $-2x - x^2 < 0$

Le dénominateur est un carré, donc positif.

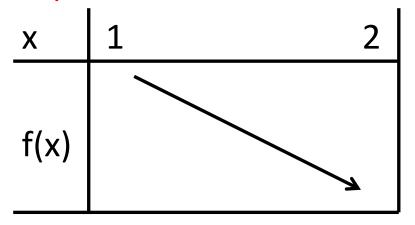
x est dans [1;2] donc x > 0 donc $-2x - x^2 < 0$

$$\rightarrow$$
 f'(x) < 0

Le dénominateur est un carré, donc positif.

x est dans [1;2] donc x > 0 donc $-2x - x^2 < 0$

$$\rightarrow$$
 f'(x) < 0 \rightarrow f est str. décroissante sur [1;2]



2°) Déterminez un encadrement de f(x).

X	1 2
f(x)	0,4
	0,3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0,4$$

$$2 + 2 + 1 5$$

$$f(2) = (2 + 1)/(2 + 4 + 4) = 0.3$$

2°) Déterminez un encadrement de f(x).

X	1	2
f(x)	0,4	~ 0,3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0,4$$

$$2 + 2 + 1 5$$

$$f(2) = (2 + 1)/(2 + 4 + 4) = 0.3$$

2°)
$$0.3 \le f(x) \le 0.4$$
 d'après le tableau de variations.

X	1	2
f(x)	0,4	^ 0,3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0.4$$

$$2 + 2 + 1 5$$

$$f(2) = (2 + 1)/(2 + 4 + 4) = 0.3$$

- 2°) $0.3 \le f(x) \le 0.4$ d'après le tableau de variations.
- 3°) Déterminez un encadrement de $A = \int_{1}^{2} f(x) dx$

idem
$$exo 4 + 5 + 7 + 8$$

X	1	2
f(x)	0,4	0.3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0.4$$

$$2 + 2 + 1 5$$

2°)
$$0.3 \le f(x) \le 0.4$$
 d'après le tableau de variations.

X	1	2
f(x)	0,4	က်

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0.4$$

$$2 + 2 + 1 5$$

2°)
$$0.3 \le f(x) \le 0.4$$
 d'après le tableau de variations.

3°)
$$\longrightarrow \int_{1}^{2} 0.3 \, dx \le \int_{1}^{2} f(x) \, dx \le \int_{1}^{2} 0.4 \, dx$$

X	1	2
f(x)	0,4	.3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0,4$$

$$2 + 2 + 1 5$$

2°)
$$0.3 \le f(x) \le 0.4$$
 d'après le tableau de variations.

X	1	2
f(x)	0,4	0,3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0,4$$

$$2 + 2 + 1 5$$

2°)
$$0.3 \le f(x) \le 0.4$$
 d'après le tableau de variations.

3°)
$$\longrightarrow \int_{1}^{2} 0.3 \, dx \le \int_{1}^{2} f(x) \, dx \le \int_{1}^{2} 0.4 \, dx$$

$$\longrightarrow \left(0.3x\right)_{1}^{2} \le A \le \left(0.4x\right)_{1}^{2}$$

$$\longrightarrow 0.6 - 0.3 \le A \le 0.8 - 0.4 \longrightarrow ...$$

Х	1	2
f(x)	0,4	,3

$$1 + 1 2$$

$$f(1) = \frac{1}{2} = \frac{1}{2} = 0.4$$

$$2 + 2 + 1 5$$

2°)
$$0.3 \le f(x) \le 0.4$$
 d'après le tableau de variations.

$$\longrightarrow$$
 0,6 - 0,3 \leq A \leq 0,8 - 0,4 \longrightarrow 0,3 \leq A \leq 0,4

$$x + 1$$

4°) $f(x) = \frac{x + 1}{2 + 2x + x^2}$

$$x + 1$$
 $2x + 2$ 1
4°) $f(x) = \frac{1}{2 + 2x + x^2} = 0.5 - x u'$

$$x + 1 2x + 2 1$$

$$4^{\circ}) f(x) = \frac{1}{2 + 2x + x^{2}} = 0.5 - x u'$$

$$2 + 2x + x^{2} 2 + 2x + x^{2} u$$

$$= 0.5 (ln(u))'$$

$$\Rightarrow f a pour primitive ...$$

$$x + 1 2x + 2 1$$

$$4^{\circ}) f(x) = \frac{1}{2 + 2x + x^{2}} = 0.5 - x u'$$

$$= 0.5 (ln(u))'$$

f a pour primitives $0.5 \ln(2 + 2x + x^2) + C$

$$x + 1 2x + 2 1$$

$$4^{\circ}) f(x) = \frac{1}{2 + 2x + x^{2}} = 0.5 - x u'$$

$$= 0.5 (ln(u))'$$

f a pour primitives
$$0.5 \ln(2 + 2x + x^2) + C$$

$$A = \int_{1}^{2} f(x) dx = ...$$

$$x + 1 2x + 2 1$$

$$4^{\circ}) f(x) = \frac{1}{2 + 2x + x^{2}} = 0.5 - x u'$$

f a pour primitives $0.5 \ln(2 + 2x + x^2) + C$

A =
$$\int_{1}^{2} f(x) dx = \left[F(x)\right]_{1}^{2} = \left[0.5 \ln(2 + 2x + x^{2})\right]_{1}^{2}$$

= ...

$$x + 1 2x + 2 1$$

$$4^{\circ}) f(x) = \frac{1}{2 + 2x + x^{2}} = 0.5 - x u'$$

f a pour primitives $0.5 \ln(2 + 2x + x^2) + C$

A =
$$\int_{1}^{2} f(x) dx = \left[F(x)\right]_{1}^{2} = \left[0.5 \ln(2 + 2x + x^{2})\right]_{1}^{2}$$

$$= 0.5 \ln(10) - 0.5 \ln(5)$$

$$= 0.5 (ln(u))'$$

f a pour primitives
$$0.5 \ln(2 + 2x + x^2) + C$$

A =
$$\int_{1}^{2} f(x) dx = \left[F(x)\right]_{1}^{2} = \left[0.5 \ln(2 + 2x + x^{2})\right]_{1}^{2}$$

$$= 0.5 \ln(10) - 0.5 \ln(5)$$

$$= 0.5 (ln(10) - ln(5))$$

$$= 0.5 \ln(10/5)$$

f a pour primitives
$$0.5 \ln(2 + 2x + x^2) + C$$

A =
$$\int_{1}^{2} f(x) dx = \left[F(x)\right]_{1}^{2} = \left[0.5 \ln(2 + 2x + x^{2})\right]_{1}^{2}$$

$$= 0.5 \ln(10) - 0.5 \ln(5)$$

$$= 0.5 (ln(10) - ln(5))$$

$$= 0.5 \ln(10/5)$$

=
$$0.5 \ln(2)$$
 = $\ln(2^{0.5})$ = $\ln(\sqrt{2})$

$$x + 1 2x + 2 1$$

$$4^{\circ}) f(x) = \frac{1}{2 + 2x + x^{2}} = 0,5 - x u'$$

f a pour primitives
$$0.5 \ln(2 + 2x + x^2) + C$$

A =
$$\int_{1}^{2} f(x) dx = \left[F(x)\right]_{1}^{2} = \left[0.5 \ln(2 + 2x + x^{2})\right]_{1}^{2}$$

$$= 0.5 \ln(10) - 0.5 \ln(5)$$

$$= 0.5 (ln(10) - ln(5))$$

$$= 0.5 \ln(10/5)$$

=
$$0.5 \ln(2)$$
 $\approx 0.34657...$ qui est bien entre 0.3 et 0.4