I Les Probabilités

- I Les Probabilités
- 1°) Les nombres de branches de l'arbre ayant k succès

I Les Probabilités

1°) Les nombres de branches de l'arbre ayant k succès peuvent être donnés par la calculatrice.

chapitre 13 Complément

au programme de Sti2D

I Les Probabilités

1°) Les nombres de branches de l'arbre ayant k succès peuvent être donnés par la calculatrice.

Casio: Menu \rightarrow Run \rightarrow OPTN \rightarrow PROB \rightarrow nCr

On tape (par exemple): 10 nCr 7 EXE ...

Texas: Math \rightarrow PROB \rightarrow nCr (ou combinaison pour certaines calculettes).

On tape (par exemple): 10 nCr 7 EXE ...

chapitre 13 Complément

au programme de Sti2D

I Les Probabilités

1°) Les nombres de branches de l'arbre ayant k succès peuvent être donnés par la calculatrice.

Casio: Menu \rightarrow Run \rightarrow OPTN \rightarrow PROB \rightarrow nCr

On tape (par exemple): 10 nCr 7 EXE 120

Texas: Math \rightarrow PROB \rightarrow nCr (ou combinaison pour certaines calculettes).

On tape (par exemple): 10 nCr 7 EXE 120

Pour garder (ou rejeter) un échantillon, on utilise un critère, comme le critère de confiance au seuil de 95%.

Pour garder (ou rejeter) un échantillon, on utilise un critère, comme le critère de confiance au seuil de 95%.

Selon ce critère, 95% des échantillons sont représentatifs du phénomène aléatoire, et ont leur fréquence dans

l'intervalle [p -
$$\frac{1}{\sqrt{n}}$$
; p + $\frac{1}{\sqrt{n}}$].

Pour garder (ou rejeter) un échantillon, on utilise un critère, comme le critère de confiance au seuil de 95%.

Selon ce critère, 95% des échantillons sont représentatifs du phénomène aléatoire, et ont leur fréquence dans

l'intervalle [p -
$$\frac{1}{\sqrt{n}}$$
; p + $\frac{1}{\sqrt{n}}$].

Les autres (2,5% ayant une fréquence audessus, et 2,5% en-dessous, peuvent être considérés non représentatifs.

Exercice 1:

Je lance 50 dés équilibrés.

- 1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6 ?
- 2°) Quelle est la probabilité à 0,01% près d'obtenir au plus 13 fois le 5 ou le 6?
- 3°) Je lance 50 fois une pièce de monnaie, j'obtiens 46 Pile. La pièce est-elle truquée ? On utilisera le critère de confiance au seuil de 95%.

1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6 ?

Soit X la variable aléatoire donnant le nombre k de succès (obtenir le 6). 1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6?

Soit X la variable aléatoire donnant le nombre k de succès (obtenir le 6).

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

 $X \text{ suit } \mathbb{S}(50; 1/6)$

1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6?

Soit X la variable aléatoire donnant le nombre k de succès (obtenir le 6).

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

 $X \text{ suit } \mathbb{G}(50; 1/6)$

On a alors $P(X = k) = (n; k) p^{k} (1-p)^{n-k}$

1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6 ?

Soit X la variable aléatoire donnant le nombre k de succès (obtenir le 6).

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

 $X \text{ suit } \mathbb{G}(50; 1/6)$

On a alors
$$P(X = k) = (n; k) p^{k} (1 - p)^{n-k}$$

 $\implies P(X = 10) = (50; 10) (1/6)^{10} (5/6)^{40}$
(50; 10) = n^{b} de branches de l'arbre ayant 10 succès

- 1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6 ?
- Soit X la variable aléatoire donnant le nombre k de succès (obtenir le 6).

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

X suit $\Re(50; 1/6)$

On a alors
$$P(X = k) = (n; k) p^{k} (1-p)^{n-k}$$

 $\implies P(X = 10) = (50; 10) (1/6)^{10} (5/6)^{40}$
(50; 10) = n^{b} de branches de l'arbre ayant 10 succès
A la calculatrice : $(50; 10) \approx 1,0272 \times 10^{10}$

1°) Quelle est la probabilité à 0,01% près d'obtenir 10 fois le 6 ?

Soit X la variable aléatoire donnant le nombre k de succès (obtenir le 6).

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

X suit ß(50; 1/6)

On a alors
$$P(X = k) = (n; k) p^{k} (1 - p)^{n-k}$$

 $\implies P(X = 10) = (50; 10) (1/6)^{10} (5/6)^{40}$
(50; 10) = n^{b} de branches de l'arbre ayant 10 succès
A la calculatrice : $(50; 10) \approx 1,0272 \times 10^{10}$

$$P(X = 10) = 1,0272 \times 10^{10} (1/6)^{10} (5/6)^{40} \approx 11,56\%$$

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

Y suit ß(50; 2/6)

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

Y suit ß(50; 2/6)

On a alors $P(Y = k) = (n; k) p^{k} (1-p)^{n-k}$

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

Y suit ß(50; 2/6)

On a alors
$$P(Y = k) = (n; k) p^k (1 - p)^{n-k}$$

 $P(Y \le 13) = P(Y = 0) + P(Y = 1)$
 $+ ... + P(Y = 12) + P(Y = 13)$

On a alors
$$P(Y = k) = (n; k) p^k (1 - p)^{n-k}$$

 $P(Y \le 13) = P(Y = 0) + P(Y = 1)$
 $+ ... + P(Y = 12) + P(Y = 13)$

On a alors
$$P(Y = k) = (n; k) p^k (1 - p)^{n-k}$$

 $P(Y \le 13) = P(Y = 0) + P(Y = 1)$
 $+ ... + P(Y = 12) + P(Y = 13)$

Menu RUN

Pour obtenir à la calculatrice tous les k de 0 à 50 :

Seq (X, X, 0, 50, 1) stock List 1 EXE

On a alors
$$P(Y = k) = (n; k) p^k (1 - p)^{n-k}$$

 $P(Y \le 13) = P(Y = 0) + P(Y = 1)$
 $+ ... + P(Y = 12) + P(Y = 13)$

Menu RUN

Pour obtenir à la calculatrice tous les k de 0 à 50 :

Seq (X, X, 0, 50, 1) stock List 1 EXE

Tous les (n; k): 50 nCr List 1 stock List 2 EXE

On a alors
$$P(Y = k) = (n; k) p^k (1 - p)^{n-k}$$

 $P(Y \le 13) = P(Y = 0) + P(Y = 1)$
 $+ ... + P(Y = 12) + P(Y = 13)$

Menu RUN

Pour obtenir à la calculatrice tous les k de 0 à 50 :

```
Seq ( X , X , 0 , 50 , 1 ) stock List 1 EXE

Tous les ( n ; k ) : 50 nCr List 1 stock List 2 EXE

Tous les P( Y = k ) : List 2 \times ((2/6) \land \text{List 1}) \times ((4/6) \land (50 - \text{List 1})) stock List 3
```

```
2°) Y suit ß(50; 2/6)
On a alors P(Y = k) = (n; k) p^{k} (1-p)^{n-k}
P(Y \le 13) = P(Y = 0) + P(Y = 1)
                   + ... + P(Y = 12) + P(Y = 13)
Menu RUN
Pour obtenir à la calculatrice tous les k de 0 à 50 :
Seq ( X , X , 0 , 50 , 1 ) stock List 1 EXE
Tous les (n; k): 50 nCr List 1 stock List 2 EXE
Tous les P(Y = k): List 2 \times ((2/6)^{h}) List 1 \times (2/6)^{h}
            ((4/6) \land (50 - List 1)) stock List 3
Tous les P(Y \le k): Cuml List 3 stock List 4
```

Menu RUN pour les actions Menu STAT pour lire les valeurs numériques

k	(n ; k)	p(X = k)	p(X ≤k)

Menu RUN pour les actions
Menu STAT pour lire
les valeurs numériques
Seq (X , X , 0 , 50 , 1)
stock List 1 EXE

Seq et List se trouvent dans
Menu → Run
→ OPTN → LIST

k	(n ; k)	p(X = k)	p(X ≤k)
0			
1			
etc			
12			
13			
etc			

Menu RUN pour les actions Menu STAT pour lire les valeurs numériques

50 nCr List 1 stock List 2 EXE

k	(n ; k)	p(X = k)	p(X ≤k)
0	1		
1	50		
etc			
12	1×10 ¹¹		
13	4×10 ¹¹		
etc			

nCr se trouve dans

Menu \rightarrow Run \rightarrow OPTN \rightarrow Prob

Menu RUN pour les actions
Menu STAT pour lire
les valeurs numériques
Seq (X , X , 0 , 50 , 1)
stock List 1 EXE
50 nCr List 1 stock List 2 EXE
List 2 × ((2/6) ^ List 1)

 \times ((4/6) $^{\circ}$ (50 – List 1))

stock List 3 EXE

k	(n ; k)	p(X = k)	p(X ≤k)
0	1	2×10 ⁻⁹	
1	50	4×10 ⁻⁸	
etc			
12	1×10 ¹¹	0,0464	
13	4×10 ¹¹	0,0679	
etc			

Menu RUN pour les actions
Menu STAT pour lire
les valeurs numériques

Seq(X,X,0,50,1)

stock List 1 EXE

50 nCr List 1 stock List 2 EXE

List $2 \times ((2/6) \wedge List 1)$

 \times ((4/6) $^{\circ}$ (50 – List 1))

stock List 3 EXE

Cuml List 3 stock List 4

k	(n ; k)	p(X = k)	p(X ≤k)
0	1	2×10 ⁻⁹	2×10 ⁻⁹
1	50	4×10 ⁻⁸	4×10 ⁻⁸
etc			
12	1×10 ¹¹	0,0464	0,1035
13	4×10 ¹¹	0,0679	0,1714
etc			

Cuml se trouve dans

 $OPTN \rightarrow List$

Menu RUN pour les actions
Menu STAT pour lire
les valeurs numériques

Seq (X, X, 0, 50, 1)

stock List 1 EXE

50 nCr List 1 stock List 2 EXE

List $2 \times ((2/6) \wedge List 1)$

 \times ((4/6) $^{\circ}$ (50 – List 1))

stock List 3 EXE

Cuml List 3 stock List 4

k	(n ; k)	p(X = k)	p(X ≤k)
0	1	2×10 ⁻⁹	2×10 ⁻⁹
1	50	4×10 ⁻⁸	4×10 ⁻⁸
etc			
12	1×10 ¹¹	0,0464	0,1035
13	4×10 ¹¹	0,0679	0,1714
etc			

$$P(Y \le 13) \approx 17,14 \%$$

Texas: 1°) Pour écrire tous les k de 0 à n sans les taper un à un :

 2^{nd} List \rightarrow OPS \rightarrow Seq (ou Suites pour certaines calculettes) On tape: Seq (X, X, 0, 10, 1) stock L1 EXE

2°) Pour déterminer n'importe quel (n; k):

Math \rightarrow PROB \rightarrow nCr (ou combinaison) On tape (par exemple pour k = 7): 10 nCr 7 EXE

3°) Pour déterminer toutes les probabilités P(X = k) pour tous les k de 0 à n sans faire tous les calculs à la main :

On tape : $(10 \text{ nCr L1}) \times ((1/3) \text{ ^L1}) \times ((2/3) \text{ ^ (10 - L1)}) \text{ stock L2}$

4°) Pour déterminer toutes les probabilités P(X ≤ k) pour tous les k de 0 à n sans faire tous les calculs à la main :

 2^{nd} List \rightarrow OPS \rightarrow Cuml qui signifie "Cumulées".

On tape: Cuml L2 stock L3

Puis on va dans le Menu Stat lire les valeurs numériques.

3°) Je lance 50 fois une pièce de monnaie, j'obtiens 46 Pile. La pièce est-elle truquée ? On utilisera le critère de confiance au seuil de 95%.

Selon ce critère, 95% des échantillons sont représentatifs du phénomène aléatoire, et ont leur fréquence dans l'intervalle

[p -
$$1/\sqrt{n}$$
 ; p + $1/\sqrt{n}$].

Les autres (2,5% ayant une fréquence audessus, et 2,5% en-dessous, peuvent être considérés non représentatifs.

La variable aléatoire suit une loi binomiale car :

- 1) on répète plusieurs fois la même expérience.
- 2) cette expérience n'a que 2 issues (Réussite ou Echec).
- 3) la variable aléatoire donne le nombre de Réussites.

Z suit ß(50;3/6)

On a alors $P(X = k) = (n; k) p^k (1-p)^{n-k}$ pour tous les nombres k de succès de $0 \ge 50$

Etape 1:

Tous les k de 0 à 50 :

on tape dans le Menu RUN

Seq (X, X, 0, 50, 1) stocké dans List 1

Seq et List se trouvent dans OPTN LIST

On peut vérifier dans Menu STAT que tous les nombres de succès de 0 à 50 sont bien en Liste 1

k

0

1

. . .

17

18

..

31

32

• • •

50

Etape 2:

Toutes les nombres de branches favorables de l'arbre :

on tape dans le Menu RUN 50 nCr List 1 stocké dans List 2

nCr se trouve dans OPTN PROB

On peut vérifier dans Menu STAT que tous les nombres de branches favorables de l'arbre sont bien en Liste 2

k	(n ; k) ≈
0	1
1	50
•••	
17	1×10 ¹³
18	2×10 ¹³
31	3×10 ¹³
32	2×10 ¹³
50	1

Etape 3:

Toutes les probabilités :

$$P(X = k) = (n; k) p^{k} (1-p)^{n-k}$$

on tape dans le Menu RUN

On peut vérifier dans Menu STAT que toutes les probabilités sont bien en Liste 3

k	(n ; k) ≈	p(X = k) ≈
0	1	8×10 ⁻¹⁶
1	50	4×10 ⁻¹⁴
17	1×10 ¹³	0,0087
18	2×10 ¹³	0,016
31	3×10 ¹³	0,027
32	2×10 ¹³	0,016
50	1	8×10 ⁻¹⁶

Etape 4:

Toutes les proportions des échantillons par rapport à l'ensemble des échantillons :

on tape dans le Menu RUN Cuml List 3 stocké dans List 4

Cuml se trouve dans OPTN LIST

On peut vérifier dans Menu STAT que toutes les proportions sont bien en Liste 4

k	(n ; k) ≈	p(X = k) ≈	p(X ≤ k) ≈
0	1	8×10 ⁻¹⁶	8×10 ⁻¹⁶
1	50	4×10 ⁻¹⁴	4×10 ⁻¹⁴
•••			
17	1×10 ¹³	0,0087	0,0164
18	2×10 ¹³	0,016	0,0324
31	3×10 ¹³	0,027	0,9675
32	2×10 ¹³	0,016	0,9835
50	1	8×10 ⁻¹⁶	1

Etape 5:

Selon le critère de confiance au seuil de 95%,

il y a une proportion de 2,5% d'échantillons peu probables et trop mauvais

k	(n;k) ≈	p(X=k) ≈	p(X≤k) ≈
0	1	8×10 ⁻¹⁶	8×10 ⁻¹⁶
1	50	4×10 ⁻¹⁴	4×10 ⁻¹⁴
•••			
17	1×10 ¹³	0,0087	0,0164
18	2×10 ¹³	0,016	0,0324
31	3×10 ¹³	0,027	0,9675
32	2×10 ¹³	0,016	0,9835
•••			
50	1	8×10 ⁻¹⁶	1

Etape 5:

Selon le critère de confiance au seuil de 95%,

il y a une proportion de 2,5% d'échantillons peu probables et trop mauvais, et 95% d'éch. probables. 97,5% –

k	(n;k) ≈	p(X=k) ≈	p(X≤k) ≈
0	1	8×10 ⁻¹⁶	8×10 ⁻¹⁶
1	50	4×10 ⁻¹⁴	4×10 ⁻¹⁴
•••			
17	1×10 ¹³	0,0087	0,0164
18	2×10 ¹³	0,016	0,0324
		_	
31	3×10 ¹³	0,027	0,9675
32	2×10 ¹³	0,016	0,9835
50	1	8×10 ⁻¹⁶	1

Etape 5:

Selon le critère de confiance au seuil de 95%,

il y a une proportion de 2,5% d'échantillons peu probables et trop mauvais, et 95% d'éch. probables 97,5% =

L'intervalle de confiance selonla définition est [18 ; 32].

k	(n;k) ≈	p(X=k) ≈	p(X≤k) ≈
0	1	8×10 ⁻¹⁶	8×10 ⁻¹⁶
1	50	4×10 ⁻¹⁴	4×10 ⁻¹⁴
•••			
17	1×10 ¹³	0,0087	0,0164
18	2×10 ¹³	0,016	0,0324
•••			
	3×10 ¹³	0,027	0,9675
31	3×10 ¹³ 2×10 ¹³	0,027	0,9675 0,9835

3°) p(X≤k) (n;k) p(X=k)k L'intervalle de confiance 0 8×10⁻¹⁶ 8×10⁻¹⁶ est [18 ; 32], 1 50 4×10⁻¹⁴ 4×10⁻¹⁴ 46 n'en fait pas partie, • • • 1×10^{13} 17 0,0087 0,0164 donc l'échantillon est peu probable et non représentatif. 2×10¹³ 0,016 0,025 18 0,0324 les dés seraient-ils truqués ? 31 3×10^{13} 0,027 0,9675 0,975 32 2×10¹³ 0,016 0,9835 8×10^{-16} 50 1